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Abstract

Classifying and segmenting patterns from a few examples is
a key problem in remote sensing and earth observation, as
acquiring large amounts of accurately labeled, and ground-
truthed data is difficult. Prior works show that meta-learning,
based on episodic training on query and support sets, is a
promising approach. Yet, direct fine-tuning techniques have
drawn scant attention. The objective of this paper is to re-
purpose contrastive learning as a pretraining method for few-
shot learning for both classification and semantic segmen-
tation tasks for remote sensing. We find that fine-tuning of
embeddings learned from contrastive methods is crucial to
the few-shot learning tasks. With only a few labeled sam-
ples, such a simple approach outperforms supervised learn-
ing methods. We evaluate our approach on two key remote
sensing datasets: Agriculture-Vision and EuroSAT. Combin-
ing these contrastive methods with only a few labeled exam-
ples, our approach outperforms purely supervised training on
the nearly 95,000 images in Agriculture-Vision on both clas-
sification and semantic segmentation tasks. Similarly, the pro-
posed few-shot method achieved better results on the land-
cover classification task on EuroSAT compared with super-
vised model training on the fully supervised dataset.

Introduction
Remote sensing (RS) and earth observation (EO) imagery
enables the detection and monitoring of critical societal
challenges including food security, natural disasters, clean
water availability, hunger and poverty, impact of climate
change, threats to animal habitats, geopolitical risk, and
more. Like other domains, RS-EO has benefited from the
significant advances in machine vision systems over the past
decade. However, these algorithms’ ability to learn without
abundant labeled data is far from satisfactory, even when
compared to a toddler (Landau, Smith, and Jones 1988;
Samuelson and Smith 2005). This fact severely limits the
scalability of learned models, with various categories fol-
lowing the long-tail distribution in the real world. The lack
of labeled samples is even more severe for RS-EO tasks,
as data acquisition often involves concerns around security,
ethics, resources, accessibility, and cost (Yang et al. 2022).
Furthermore, annotation of remote sensing data often re-
quires high levels of expert knowledge and true ground-truth
verification (i.e. physically traveling to locations to con-
firm predictions). Therefore developing machine-learning

applications from RS-EO data to address key societal chal-
lenges is often thwarted by the domain’s particularly labori-
ous dataset-creation process (Sun et al. 2021; Paliyam et al.
2021).

Inspired by human’s highly efficient learning ability, re-
search around learning from unlabeled data, i.e. unsuper-
vised or self-supervised learning, and the ability to gener-
alize from only a few examples, i.e. few-shot learning, have
become key areas of interest in the machine learning com-
munity (Vinyals et al. 2016; Finn, Abbeel, and Levine 2017;
Sung et al. 2018; Gidaris and Komodakis 2018; Sun et al.
2021; Alajaji et al. 2020; Li, Deng, and Fang 2021). Few-
shot learning aims to realize the knowledge adaption of em-
beddings from label-abundant data to label-scarce classes.
While the adapted representation aims to discriminate dif-
ferent levels of information (e.g., instance level and semantic
level) between classes, the embedding should be invariant to
common, irrelevant variations of the image, including differ-
ent sizes, deformations, and lighting. The question is then:
How can we learn a representation invariant to common fac-
tors while maintaining differences for diverse classes with
limited labels?

As a prevailing and advancing research topic, contrastive
learning has demonstrated impressive results on various
downstream learning tasks. These methods seek to learn
a transferable representation by strongly augmenting large
quantities of raw data and pulling views of the same im-
age close together while pushing differing images apart.
These methods are often evaluated on the performance of
downstream tasks fine-tuned on different fractions of the su-
pervised dataset. However, the focus is rarely on the one-
shot or few-shot cases for extremely limited datasets. As
raw RS-EO data is highly abundant but ground-truth data is
extremely scarce, leveraging constrastive methods for few-
shot learning offers a key opportunity in this domain. Ad-
ditionally, most common contrastive learning and few-shot
methods were developed for natural scene imagery; e.g. (He
et al. 2020; Chen et al. 2020a; Grill et al. 2020; Zbon-
tar et al. 2021) show that as the statistics of that domain
(both source imagery and targets) are extremely different
from RS-EO data, there is no guarantee that the same benefit
will be observed without adaptation. Therefore, we investi-
gate the improvement in performance of few-shot learning in
RS-EO classification and semantic segmentation tasks using



contrastive-learning based pretraining.

Specifically, we focus on pretraining from the Extended
Agriculture Vision dataset (AV+) (Wu et al. 2022), which in-
cludes high-resolution aerial imagery over agricultural lands
in the US Midwest. Obtaining ground-truth annotations for
agriculture is particularly challenging due to patterns of in-
terest being small in size, high in number, and often pos-
sessing ambiguous boundaries; the ability to identify pat-
terns from only a small number of samples addresses key
challenges in precision agriculture and food security.

Inspired by the work of (Gidaris and Komodakis 2018;
Qi, Brown, and Lowe 2018; Wang et al. 2020), we adopt
a two-stage training scheme: improved momentum contrast,
MoCo-V2 (Chen et al. 2020c) pretraining followed by fine-
tuning. This pretraining stage should enable the backbones
to encode spatially invariant features. Then, we add a fi-
nal layer, for classification tasks, or a decoder, for semantic
segmentation task. During the fine-tuning stage, we fix all
backbones parameters and train only on the classification-
layer/decoder. Additionally, we apply instance-level feature
normalization to the last layer in the classification task (Gi-
daris and Komodakis 2018; Qi, Brown, and Lowe 2018;
Wang et al. 2020) .

We find that the embeddings pretrained from AV+ un-
der this protocol show better adaptability when compared to
counterparts pretrained on ImageNet (Deng et al. 2009) and
COCO (Lin et al. 2014). Our method outperforms pretrained
ImageNet weights by 1 to 6 points on Agriculture-Vision
and EuroSAT classification tasks under the same number of
supervised training samples. Similarly our embeddings de-
liver a 5 to 7 point improvement on mIoU compared with
embeddings learned from COCO on the Agriculture-Vision
semantic segmentation task.

In the meantime, we demonstrate the high learning effi-
ciency of the proposed method for RS-EO imagery. With
a few labeled images, we find that the contrastive-learning-
based fine-tuning approach shows comparable or even bet-
ter results under different tasks and datasets when compared
with supervised models trained on full labeled data samples;
our proposed approach shows matching performance with
less than 0.01 percent of labeled data.

In summary, the contributions of this paper can be sum-
marized: (1) We leverage contrastive learning for both clas-
sification and segmentation few-shot learning tasks using re-
mote sensing imagery. (2) We demonstrate the successful
adaptation of the two-stage contrastive-learning-based few-
shot strategy for RS-EO data. (3) We empirically show that
instance-level feature normalization benefits classification
tasks in RS-EO images. (4) Extensive experiments show that
our approach allows us to competitively identify key agri-
cultural and land cover patterns with only a small amount of
labeled data. (5) We demonstrate that pretraining on AV+,
a high-resolution multi-spectral RS-EO dataset, provides
strong benefit to other RS-EO tasks on lower-resolution data
such as EuroSAT.

Related Work
Few-Shot Learning
Efficient adaption algorithms have been developed for var-
ious few-shot learning tasks such as classification (Fei-
Fei, Fergus, and Perona 2006), object detection (Wang
et al. 2020), semantic segmentation (Wang et al. 2019),
and robot learning (Finn et al. 2017). Generally, previous
works can be roughly cast into three categories: metric-
based, optimization-based, and hallucination-based.

The key idea of metric-based approaches is to learn good
embeddings with appropriate kernels. Previous results from
(Koch et al. 2015) propose applying a siamese neural net-
work for few-shot classification. Following that, (Sung et al.
2018) presents a Relation Network by replacing the L1 dis-
tance between features with a convolutional neural network
(CNN)-based classifier and updating the mean squared error
(MSE) with cross-entropy; the triplet loss is utilized to im-
prove the model’s performance (Cacheux, Borgne, and Cru-
cianu 2019). (Gidaris and Komodakis 2019) further adds ex-
tra self-supervised tasks to enhance generalization capacity.

Optimization-based methods aim to learn through gradi-
ent backpropagation. Representative works include MAML
(Finn, Abbeel, and Levine 2017), which realizes quick adap-
tion from a good initialization spot, Reptile (Nichol and
Schulman 2018), which simplifies the learning process of
MAML, and MetaOptNet (Lee et al. 2019), which incorpo-
rates the support vector machine (SVM) as a classifier.

Hallucination-based methods seek to learn generators to
generate unseen samples. Works from (Wang et al. 2018;
Zhang, Zhang, and Koniusz 2019; Li et al. 2020a) show that
such a strategy of hallucination improves the test results and
enhances the generation of models.

Few-Shot learning for RS-EO has received increased at-
tention in recent years, (Sun et al. 2021). While much of
the work is focused on scene classification (Alajaji et al.
2020; Li et al. 2020b; Alajaji and Alhichri 2020; Liu et al.
2018), other recent approaches examine semantic segmen-
tation tasks (Wang et al. 2021; Kemker, Luu, and Kanan
2018; Yao et al. 2021).

Contrastive Learning
Contrastive learning is widely used for pretraining with-
out labeled data and shows superior performance in vari-
ous self-supervised learning (SSL) tasks (Chen et al. 2020c;
Grill et al. 2020; Chen et al. 2020a,b). Specifically, con-
trastive approaches train architectures by bringing the rep-
resentation of different views of the same image closer to-
gether while spreading representations of views from dif-
ferent images apart. The success of training may rely on
large batch sizes (Chen et al. 2020a), a momentum-update
memory bank (He et al. 2020), projection heads (Chen et al.
2020c), and/or stop-gradient trick (Chen and He 2021). Bar-
low Twins (Zbontar et al. 2021) further proposes a new con-
trastive learning objective without using the trick of stop-
gradient, which also brings equivalent results. Among all
these methods, MoCo-V2 is one of the most widely used
frameworks, given its memory efficiency and promising per-
formance(Chen et al. 2020c). Within the field of RS-EO



specifically, (Manas et al. 2021) takes MoCo-V2 as the basis
and uses multiple projection heads to capture desired invari-
ance to seasonality. Therefore, we continue to utilize MoCo-
V2 as a pretraining protocol in this work.

Pairing Supervised and Self-Supervised Learning
Supervised and self-supervised learning have been explored
jointly in numerous prior works. Some methods utilize the
SSL loss as supplemental losses during the supervised train-
ing process (Gidaris et al. 2019; Su, Maji, and Hariharan
2020). Often, additional efforts are needed to calibrate (i.e.
re-weight) these losses when crossing different domains.
More straightforward and effective methods come from su-
pervised fine-tuning (Doersch, Gupta, and Zisserman 2020).
While SSL encourages the learning of general-purpose fea-
tures, the adaption of features on the new task can be realized
with only a few labeled samples. Within RS-EO, very recent
work has looked to combine SSL and few-shot learning for
scene classification (Zeng and Geng 2022) and segmenta-
tion (Li et al. 2022).

Method
To start with, we pretrain different backbones with momen-
tum contrastive learning on unlabeled data; to be more spe-
cific, there are roughly 1,300,000 images. These images
are all randomly cropped from the 3600 raw images from
AG+. Additional information for data pre-processing and
the dataset are available in the supplementary. Since MoCo-
V2 is unsupervised, there is no information on any base
classes, unlike the usual settings for few-shot learning. Only
k samples are provided for fine-tuning during the evaluation,
where k varies from 1-10. The evaluation will include both
base and novel classes based on different downstream tasks
with the goal to optimize the classification accuracy or mIoU
of agricultural patterns on Agriculture-Vision and land cov-
ers on EuroSAT.

Pretraining with Momentum Contrast
In this section, we present the pretraining stage of our frame-
work. Concretely, our pretraining is based on MoCo-V2.
MoCo-V2 is trained with natural scene images that only con-
tain information about red, green, and blue channels. How-
ever, AV+ has extra information in the NIR channel. To fully
explore knowledge from the pretraining dataset, we further
add one channel to the backbones following the work from
(AV+ paper).

In every training epoch of MoCo, a training sample is
augmented into two different views named as query xq and
key xk. These views contain variations introduced from data
augmentations, including spatial and color transforms. With
an online network and a momentum-updated offline net-
work, the training encourages these two views to be mapped
into two similar embedding spaces, i.e., q, k, as a positive
pair.

MoCo offers two critical properties for avoiding model
collapse (Jing et al. 2021) in contrastive learning. First, a
queue data structure is proposed to store a rich set of nega-
tive features. This large dictionary enables the training with-
out using large batch sizes. Second, MoCo stabilizes the

training stage with a momentum-update strategy instead of
using back-propagation. While query features are encoded
from the gradient-based backbone, keys are all mapped from
the momentum encoder, as shown in Figure 1.

Together, based on positive and negative pairs and a tem-
perature parameter τ for scaling, the training loss function,
i.e., InfoNCE (Oord, Li, and Vinyals 2018), is then defined
as follows:

L = − log
exp(q · k+/τ)∑

k− exp(q · k−/τ) + exp(q · k+/τ)
(1)

Fine-tuning Approach
Given the strong data augmentations in contrastive learn-
ing, the backbone features encoded should be class-agnostic.
Ideally, it should adapt to different data classes and types of
downstream tasks without much learning effort. Therefore,
the critical step of the proposed method is to separate rep-
resentation learning and downstream task learning into two
stages.

With contrastive learning applied in the first stage, we
fine-tune models with a few labeled images. We first cre-
ate a small balanced training set with K images per class,
i.e., K shots. These classes can either be seen or be novel
classes. In the few-shot classification task, we add one fully
connected layer to the backbones without introducing extra
nonlinearity. We assign randomly initialized weights to the
added classification layer. The intuition to model the classi-
fier in such a naive way is due to the two fundamental prop-
erties of features from contrastive learning, alignment, and
uniformity(Wang and Isola 2020). Generally, alignment in-
dicates that similar views are close to each other in the em-
bedding space. Uniformity prefers a uniform distribution if
features are mapped on a unit hyper-sphere. Therefore, fea-
tures are linearly separable when classes are well-clustered,
as shown in Figure2.

We also consider using cosine similarity between features
and weights inspired by work from (Wang et al. 2020; Gi-
daris and Komodakis 2018). For each class, the per-class
weights can be noted as wt, where t is the index for the
classes. Therefore, the weight matrix for all total classes can
be formed as [w1,w2,...,wt] and noted as W ∈ Rd×t, where
d is the feature dimension. Then, the final similarity score
S is computed by the dot product of input feature F (x) and
the weight vectors. More specifically, the entries in S are
defined as

si,j =
αF (x)Ti wj

∥F (x)i∥ ∥wj∥
, (2)

which indicates the similarity score between the proposal of
the i-th pattern(class) and the weights vector of class j, and
α is a hyper-parameter for scaling, which is consistently set
to 1 in all experiments. Based on the results in the follow-
ing sections, we empirically find that the instance-level nor-
malization with such a cosine similarity metric enhances the
stability and final performance of the classifier in the classi-
fication task on Agriculture-Vision and EuroSAT.
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Figure 1: Illustration of the proposed two-stage learning approach. In the pretraining stage, we follow the training strategy of
contrastive learning to train the backbones and projectors jointly with abundant unlabeled images. In the fine-tuning stage with
limited labeled images, we adapt the pretrained backbone from stage1 for feature extraction. The feature extractors are fixed,
and fine-tuning is only involved in the classifier and segmentation decoder.
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Figure 2: Features learned from momentum contrast learn-
ing are uniformly distributed and linearly separable on a unit
hyper-sphere.

In the few-shot semantic segmentation task, we choose
the lightweight segmentation model U-Net (Ronneberger,
Fischer, and Brox 2015) for fine-tuning given limited
training samples. Concretely, we add a five-layer decoder
based on the encoders (backbones) pretrained from con-
trastive learning. Empirically, this asymmetric encoder-
decoder shows exceptional performance in the segmentation
task on Agriculture-Vision.

Experiments and Results
In this study, we conduct various experiments to prove the
effectiveness of our proposed methods. We start with the
preliminaries of the evaluation method and then give the de-
tailed results in the following sections.

Preliminaries for Evaluation
We evaluate the proposed method from two perspectives,
i.e., the quality of embeddings and the required amount of
labeled data for model adaptation. First, in the few-shot clas-

sification task, we compare the performance of features from
the backbone pretrained on ImageNet, and the backbone pre-
trained on AV+ using MoCo-V2. Similarly, in the few-shot
semantic segmentation task, embeddings pretrained on AV+
using MoCo-V2 and embeddings from COCO’s weights are
compared. Second, to illustrate the learning efficiency of our
method, we compare the two models’ performances, one of
which is fine-tuned on a few samples, and the other is trained
in a supervised way with complete labeled data.

Pretraining on Extended Agriculture-Vision
In the first stage, we apply momentum contrast learning to
pretrain backbones as shown in the left part of Figure1.

Extended Agriculture-Vision For contrastive pretrain-
ing, we use the large-scale remote-sensing dataset, Ex-
tend Agriculture-Vision (Wu et al. 2022). While the origi-
nal Agriculture-Vision dataset contained only 512x512 tiles
with semantic segmentation labels for agricultural patterns
such as waterways, weeds, nutrient deficiency, etc., AV+
includes several thousand additional raw full-field images
(upwards of 10,000 x 10,000 in dimension). Images con-
sist of RGB and Near-infrared (NIR) channels with resolu-
tions as high as 10 cm per pixel. As it also covers data that
varies from 2017 to 2020, encoders pretrained on this dataset
should capture remote sensing, agriculture, and temporal
features. Therefore, the embeddings pretrained on Extend
Agriculture-Vision should be adapted well to diverse down-
stream tasks such as agricultural pattern recognition and
land-cover classification. Additional details of this dataset
are included in the Supplemental.

Pretraining Implementation Details We adopt MoCo-
V2 for pretraining, given its promising performance and
memory efficiency. We use different sizes of ResNet as the
encoder and two layers of MLP as a projector. Following
the original work, each embedding has 128 dimensions, and
there are 16,384 negative keys stored in the memory bank.
We pretrain MoCo for 200 epochs using an SGD optimizer,



the learning rate of 0.3, and weight decay of 0.0001. The
learning rate is adjusted to 0.03 and 0.003 at 140th and 160th
epochs accordingly. As this data is hyperspectral, we add
one more channel to the encoder during the training for the
NIR input, and this extra channel is initialized with the same
weights as the red channel.

Few-shot Learning on Agriculture-Vision
In the second stage, we conduct few-shot experiments
on classification and semantic segmentation tasks on
Agriculture-Vision shown in the right part of Figure 1.

Agriculture-Vision Agriculture-Vision (AV) is a large
aerial image database for agricultural pattern analysis. It
contains 94,986 high-quality images over 3432 farmlands
across the US. Totally, there are nine classes selected in the
dataset under the advisement of agronomists, which include
double plant, dry-down, endrow, nutrient deficiency, planter
skip, storm damage, water, waterway, and weed cluster. With
extreme label imbalance across categories, it is a challenge
to train well-performance model models for classification
and segmentation tasks (Chiu et al. 2020a). The original
dataset is designed for semantic segmentation; we also cre-
ate a ”classification” version of the dataset by assigning a
positive label if any presence of that class is included in the
tile.

Few-shot Classification on Agriculture-Vision The first
set of experiments focuses on the classification formulation
of the Agriculture-Vision task. We use ResNet-18, ResNet-
50 and ResNet-101 as the backbones for fine-tuning. All
backbones are fixed, except the last fully connected layer
which is learnable. Different from the optimization methods
used in (He et al. 2020), we use Adam as an optimizer for
all experiments with an initial learning rate set to 0.001. We
train the classification models for 100 epochs with a batch
size of 64.

Table 1: Comparison of fine-tuning results between weights
pretrained on supervised ImageNet and weights from our
MoCo on AV+ for the 10-shot classification

Pretrained Weight Backbone Accuracy(%)

ImageNet ResNet-18 55.22
MoCo on AV+ ResNet-18 65.51

ImageNet ResNet-50 54.53
MoCo on AV+ ResNet-50 64.82

ImageNet ResNet-101 54.34
MoCo on AV+ ResNet-101 64.62

We first prove the quality and adaptability of pretrained
embeddings from the proposed methods. As shown in the
Table 1, our pretrained weights show significantly better re-
sults than those from ImageNet, with over 10 points im-
provement on average. These results prove the adaptabil-
ity of embeddings encoded from our pretrained weights and
better generalization capacity in this few-shot classification
task for agricultural patterns. The best result is obtained

from ResNet-18, instead of the larger ResNet-50 or ResNet-
101. With only 10 shots, this observation is due to the last
layer attached to ResNet-18 being smaller than the fully con-
nected layers in larger backbones. However, all AV+ pre-
trained weights enable better performance than any Ima-
geNet weights.

Table 2: Comparison of the classification task between the
10-shot results of the proposed method and end-to-end train-
ing using the full Agriculture-Vision on ResNet-18.

Pretrained
Weight

Freeze
Backbone

Number of
Images

Accuracy
(%)

Random False 9,000 57.30
Random False 94,986 62.31

MoCo on AV+ True 10 65.51

Table 3: 9-way few-shot classification accuracy on
Agriculture-Vision.

Backbone \ Shots
Accuracy
10 shots

(%)

Accuracy
5 shots

(%)

Accuracy
1 shot
(%)

ResNet-18 65.51 61.61 16.72
ResNet-50 64.82 59.44 29.64
ResNet-101 64.62 59.56 28.84

Next, we continue to demonstrate the learning efficiency
of our model by comparing it with the model trained with
94,986 labeled images. For models training in an end-to-end
manner, there is a noticeable drop once we reduce the num-
ber of models for training. However, as shown in the Ta-
ble 2, the proposed method outperforms model training with
numerous images with little computation and much fewer la-
bels for agricultural pattern classification. This observation
is important as it illustrates the potential of training diverse
deep learning tasks in agriculture and remote sensing with
minimum effort but still providing satisfactory results.

Table 3 demonstrates the 9-way few-shot classification re-
sults with different sizes of backbones. All results are aver-
aged from 3 trials and use the same training setup for a fair
comparison. While ResNet-18 gives the best results when
trained with five shots or ten shots, ResNet-50 shows the
best results when there is only one labeled sample for each
class. The performance of ResNet-50 and ResNet-101 are
very similar. Generally, favorable results can be acquired
when the number of shots is five or greater.

Few-shot Segmentation on Agriculture-Vision
Agriculture-Vision provides dense pixel-level labels
for semantic segmentation. Therefore, we also evaluate
our proposed method in the semantic segmentation task,
which is often given less attention than classification tasks.
Following the work from (Chiu et al. 2020b), we ignore
storm damage annotations when performing evaluations due
to its extreme scarcity. Similar to the fine-tuning strategy



Table 4: Comparison of the segmentation task between the 10-shot results of the proposed method and end-to-end training using
the full Agriculture-Vision on ResNet-18 and ResNet-50.

Pretrained Weight Backbone Freeze Backbone Number of Images mIoU - 8 Classes

Random ResNet-18 False 9000 19.02
Random ResNet-18 False 94986 21.37

MoCo on AV+ (ours) ResNet-18 True 10 23.56
Random ResNet-50 False 9000 19.58
Random ResNet-50 False 94986 21.82

MoCo on AV+ (ours) ResNet-50 True 10 23.00

we used in the classification task, we freeze all backbones
during training, but with a learnable five-layer decoder.
The decoders are randomly initialized and attached to the
encoders, forming a lightweight and imbalanced U-Net.
We use the AdamW optimizer with the learning rate set to
6e-5 and the one learning rate cycle scheduler proposed by
(Smith and Topin 2019). In total, we train the segmentation
models for 100 epochs with 300 steps per epoch. For all
experiments, we use a batch size of 64 during fine-tuning.

Again, we report the quality and the efficient adaptability
of pretrained features from the proposed methods in this seg-
mentation task. Since U-Net’s structures contain skip con-
nections from different layers (Ronneberger, Fischer, and
Brox 2015), we don’t evaluate a single embedding but fea-
tures from different scales. Concretely, features from our
two-stage fine-tuning and features from encoders pretrained
on COCO are compared using the mean intersection over
union (mIoU) metric. As reported in the Table 5, our pro-
posed method shows around 6-8 points of improvement
compared with weights pretrained on COCO. Consistent
with the results from the classification task, the best mIoU is
reached by ResNet-18 with a smaller decoder attached. The
other conclusion we can draw is that the feature distribution
pretrained from natural images (COCO) and remote sensing
images (AV+) is significantly different. Therefore, we can
observe a noticeable improvement in the results pretrained
on AV+.

We also study the learning efficiency of the segmentation
task in this section. With only ten sampled images per cat-
egory, we use results of the two-stage fine-tuning technique
and the results from models training on the full Agriculture-
Vision for comparison. While our approach fixes the back-
bone, we unfreeze the segmentation model’s encoder train-
ing on the full dataset. Based on the results of mIoU in the
Table4, there is an improvement of 2.19 points and 1.18
points for ResNet-18 and ResNet-50, respectively. While
few-shot segmentation still surpasses models trained with a
large number of labeled images, we notice that the gain is
not salient compared with the improvement in the classifi-
cation task. This observation is likely because the decoders
used for segmentations have more parameters to be tuned
than a single-layer classifier. With limited labeled samples,
smaller models avoid overfitting, thus showing better results.
Therefore, ResNet-18 shows the best results in this few-shot
segmentation task.

Table 5: Comparison of fine-tuning results between weights
pretrained on COCO and weights from our MoCo on AV+
for the 10-shot semantic segmentation task.

Pretrained Weight Backbone mIoU - 8 Classes

COCO ResNet-18 15.61
MoCo on AV+ ResNet-18 23.56

COCO ResNet-50 15.60
MoCo on AV+ ResNet-50 23.00

COCO ResNet-101 15.19
MoCo on AV+ ResNet-101 21.04

Few-shot Learning on EuroSAT
We additionally illustrate that embeddings learned from mo-
mentum contrastive learning on AV+ help few-shot learn-
ing tasks in the more general remote sensing community.
To achieve this, we evaluate our proposed method on the
few-shot classification task of EuroSAT (Helber et al. 2019).
Following experiments in previous sections, we evaluate the
quality and adaptability of pretrained features from the pro-
posed methods in this land-cover classification task.

EuroSAT EuroSAT is a dataset for the classification task
of land use and land cover. All the satellite images are col-
lected from Sentinel-2, covering 34 countries. There are
27,000 images in total with ten types of labels correspond-
ing to different land use cases. The class labels are evenly
distributed, with each category consisting of 2,000 to 3,000
images. We use the split method for training and evaluation
following the work from (Manas et al. 2021; Helber et al.
2019).

Few-shot Classification on EuroSAT Likewise, we add
a one-layer network to build the classifier for EuroSAT. We
train the model for 100 epochs with an AdamW optimizer
and a batch size of 256. The initial learning rate is 0.001.

Our results show that two-stage few-shot learning still
leads to better embeddings on this remote sensing dataset.
As seen in Table 6, features from MoCo improve one per-
cent of accuracy on average compared to the features trained
from ImageNet. Since EuroSAT shares much less similar-
ity with our pretrained dataset, i.e., AV+, the improvement
is moderate. However, the gain is still stably earned cross-
ing different sizes of backbones. The most pleasing result is



Table 6: Comparison of fine-tuning results between weights
pretrained on supervised ImageNet and weights from our
MoCo on EuroSAT for the 10-shot classification

Pretrained Weight Backbone Accuracy(%)

ImageNet ResNet-18 66.90
MoCo on AV+ ResNet-18 67.92

ImageNet ResNet-50 65.01
MoCo on AV+ ResNet-50 66.11

ImageNet ResNet-101 63.34
MoCo on AV+ ResNet-101 64.79

achieved by ResNet-18 again.

Table 7: Comparison of the classification task between the
10-shot results of the proposed method and end-to-end train-
ing using the full EuroSAT on ResNet-18.

Pretrained
Weight

Freeze
Backbone

Number of
Images

Accuracy
(%)

Random False 2,700 58.81
Random False 27,000 63.24

MoCo on AV+ True 10 66.90

In the experiments on label efficiency, we continue to
compare the few-shot classification models with those mod-
els randomly initialized and trained on 27,000 labeled im-
ages. The proposed method outperforms the end-to-end
model by 3.66 points in this classification task with only ten
labeled images, as shown in the Table 8. This result is cru-
cial as it proves the effectiveness of our methods across dif-
ferent domains. With remarkably cheap effort for labeling,
it re-verifies the vast possibility of deploying our models to
various downstream tasks in agriculture and remote sensing.

Table 8: 10-way few-shot classification accuracy on Eu-
roSAT.

Backbone \ Shots
Accuracy
10 shots

(%)

Accuracy
5 shots

(%)

Accuracy
1 shot
(%)

ResNet-18 67.92 63.20 11.50
ResNet-50 65.01 59.40 11.21
ResNet-101 63.70 58.70 11.40

We show the results of the 10-way few-shot classification
on EuroSAT in the following Table 8. For a complete and
fair comparison, we report the performance of backbones
with different sizes and average results over experiments
with three random seeds. More specifically, the ResNet-18
shows the most satisfactory performance crossing various
backbones and shots. While we can notice a 1 to 4 points
drop in accuracy when we increase the size of backbones
under 10 or 5 shots settings, one-shot classification shows
very similar performance regardless of encoder sizes. This

observation is likely because the information is too limited
for the adaptation of embeddings.

Ablation Study: Cosine Similarity
We use ResNet-18 as the backbone and conduct experiments
of the few-shot classification on Agriculture-Vision for this
ablation study. With cosine similarity applied between fea-
tures and weights, we observe a noticeable improvement in
the accuracy. As shown in the Table 9, this observation is es-
pecially true under the low-shot settings, i.e., 1 and 5 shots.
We also explore the value of the scaling factor α with this
hyper-parameter set to 0.1, 1, 5, and 10. All the evaluation
settings are the same for fair comparisons.

Table 9: 10-way few-shot classification accuracy on Eu-
roSAT.

Backbone \ Shots
Accuracy
10 shots

(%)

Accuracy
5 shots

(%)

Accuracy
1 shot
(%)

ResNet-18 67.31 62.16 9.43
ResNet-18 (α = 0.1) 67.34 62.41 9.55
ResNet-18 (α = 1) 67.92 63.20 11.50
ResNet-18 (α = 5) 67.55 62.99 11.12

ResNet-18 (α = 10) 67.47 62.63 10.96

Conclusion
In this work, we propose a simple yet effective two-stage
fine-tuning approach for few-shot classification and segmen-
tation on remote sensing and earth observation data. The
method performs favorably due to the remarkable adaptabil-
ity of embeddings from pretraining and high learning effi-
ciency. Most importantly, our approach provides an alter-
native direction to solve the notorious labeling challenge in
agriculture and remote sensing domains. With such a few-
shot contrastive learning-based approach, we see the possi-
bility of deploying models in the real world with minimal
labeled data and training effort.

Similarly, visual search and active learning are closely re-
lated to few-shot learning. Because physical ground-truthing
is often required, identifying key locations to annotate and
subsequently inspect could be enhanced with this approach
to minimize the collection burden. Such efforts would be
especially important when addressing time-sensitive chal-
lenges such as responding to drought, fire, flood, storm dam-
age, illegal deforestation, or pestilence. Therefore, we hope
to see further exploration and study of this work.
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