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Abstract

A key challenge for much of the machine learning work on remote sensing and earth ob-
servation data is the difficulty in acquiring large amounts of accurate labeled data. This
is particularly true for semantic segmentation tasks, which are much less common in the
remote sensing domain because of incredible difficulty in collecting precise, accurate, pixel-
level annotations at scale. Recent efforts have addressed these challenges both through the
creation of supervised datasets as well as the application of self-supervised methods. We
continue these efforts on both fronts. First, we generate and release an improved version
of the Agriculture-Vision dataset |Chiu et al.| (2020b) to include raw, full-field imagery for
greater experimental flexibility. Second, we extend this dataset with the release of 3600
large, high-resolution (10cm/pixel), full-field, red-green-blue and near-infrared images for
pre-training. Third, we incorporate the Pixel-to-Propagation Module Xie et al.| (2021b))
originally built on the SimCLR framework into the framework of MoCo-V2 |Chen et al.
(2020b). Finally, we demonstrate the usefulness of this data by benchmarking different con-
trastive learning approaches on both downstream classification and semantic segmentation
tasks. We explore both CNN and Swin Transformer |Liu et al.| (2021a)) architectures within
different frameworks based on MoCo-V2. Together, these approaches enable us to better
detect key agricultural patterns of interest across a field from aerial imagery so that farmers
may be alerted to problematic areas in a timely fashion to inform their management deci-
sions. Furthermore, the release of these datasets will support numerous avenues of research
for computer vision in remote sensing for agriculture.

1 Introduction

Massive annotated datasets like ImageNet have fostered the development of powerful and robust deep learning
models for natural images Deng et al.| (2009)); He et al.| (2016)); [Simonyan & Zisserman| (2014]); Krizhevsky!
et al.| (2012); |Russakovsky et al.| (2015)). However, creating large complex datasets is costly, time-consuming,
and may be infeasible in some domains or for certain tasks. Simultaneously, vast amounts of unlabeled data
exists in most domains. Contrastive learning has recently emerged as an encouraging candidate for solving
the need for large labeled datasets |Grill et al.| (2020)); |Caron et al.| (2020; [2018)); He et al.| (2020)). Through
pre-training, these approaches open up the possibility of using unlabeled images as its own supervision and
transferring in-domain images to further downstream tasks |Tian et al.| (2020); |Ayush et al.| (2020)).

While natural scene imagery largely dominates the research landscape in terms of vision algorithms, datasets
and benchmarks, the rapid increase in quantity and quality of remote sensing imagery has led to significant
advances in this domain as well Kelcey & Lucieer| (2012); Maggiori et al.| (2017); |Ramanath et al.| (2019);
Xia et al| (2017)). Coupled with deep neural networks, remote sensing has achieved exceptional success in
multiple domains such as natural hazards assessment Van Westen| (2013)), climate tracking [Rolnick et al.
(2019); [Yang et al| (2013), and precision agriculture Mulla| (2013)); [Seelan et al.| (2003); Barrientos et al.
(2011); |Gitelson et al. (2002). However, obtaining large quantities of accurate annotations is especially
challenging for remote sensing tasks, particularly for agriculture, as objects of interest tend to be very
small, high in number (perhaps thousands per image), possess complex organic boundaries, and may require
channels beyond red-green-blue (RGB) to identify.
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Many approaches originally developed for natural images work well on remote sensing imagery with only
minimal modification, although this is not guaranteed due to the large domain gap. Additionally, they
may fail to exploit the unique structure of earth observation data such as geographic consistency or sea-
sonality [Mafias et al| (2021]). Explicitly benchmarking approaches on domain relevant data is critical. In
this work, we focus primarily on the Agriculture-Vision (AV) dataset |Chiu et al.| (2020b): a large, multi-
spectral, high-resolution (10 cm/pixel), labeled remote sensing dataset for semantic segmentation. Unlike
low-resolution public satellite data, this imagery enables within-field identification of key agronomic patterns
such as weeds and nutrient deficiency. While this dataset is noted for its size, most aerial agriculture dataset
are quite small. Therefore we leverage the large amounts of un-annotated data which is readily available in
this domain, benchmark several self-supervised approaches whose inductive bias reflect the structure of this
data, and evaluate the impact of these approaches in more data-limited settings.

Together, our contributions are as follows:

e We release a full-field version of the Agriculture-Vision dataset to further encourage broad agricul-
tural research in pattern analysis and semantic segmentation.

o We release over 3 terabytes of unlabeled, full-field images from more than 3600 full-field images to
enable unsupervised pre-training.

e We benchmark self-supervised pre-training methods based on momentum contrastive learning and
evaluate their performance on downstream classification and semantic segmentation tasks with vari-
able amounts of annotated data.

e We perform benchmarks using both CNN and Swin Transformer backbones.

e We incorporate the Pixel-to-Propagation Module Xie et al| (2021b) (PPM), originally built on
SimCLR [Chen et al. (2020a)), into the MoCo-V2 [Chen et al.| (2020b]) framework and evaluate its
performance.

e We adapt the approach of Seasonal Contrast (SeCo) [Manas et al| (2021)) for this dataset, which
contains imagery only during the growing season, and fuse this approach with PPM to specifically
address the spatiotemporal nature of the raw data and the desire to perform downstream segmen-
tation tasks.

2 Related Work

2.1 Constrastive Learning

Unsupervised and self-supervised learning (SSL) methods have proven to be very successful for pre-training
deep neural networks|Erhan et al.| (2010); Bengiol (2012); Mikolov et al.| (2013); Devlin et al|(2018). Recently,
methods like MoCo [He et al.| (2020); |Chen et al. (2020b), SimCLR, [Chen et al.| (2020a), BYOL |Grill et al.
and others Bachman et al.|(2019); Henaff (2020); Li et al. (2020) based on contrastive learning methods
have achieved state-of-the-art performance. These approaches seek to learn by encouraging attractions of
different views of the same image (“positive pairs”) as distinguished from “negative pairs” from different
images [Hadsell et al.| (2006]). Several approaches have sought to build on these base frameworks by making
modifications that better incorporate the invariant properties and structure of the input data or task output.
Specifically pertinent to the current work, Z. Xie et al. (2021) Xie et al.| (2021b) extended the SimCLR
framework through the incorporation of pixel-to-propagation module and additional pixel-level losses to
improve performance on downstream tasks requiring dense pixel predictions. Manas et al. (2021)
combined multiple encoders to capture the time and position invariance in downstream remote
sensing tasks.

2.2 Remote Sensing Datasets

Aerial images have been widely explored over the past few decades Cordts et al.| (2016); Everingham et al.|
(2010); |Gupta et al.| (2019); [Lin et al| (2014); Zhou et al| (2017, but the datasets for image segmentation
typically focus on routine, ordinary objects or street scenes Deng et al.| (2009). Many prominent datasets
including Inria Aerial Image Maggiori et al| (2017), EuroSAT Helber et al.| (2019), and DeepGlobe Build-
ing|[Demir et al|(2018) are built on low-resolution satellite (e.g. Sentinel-1, Sentinel-2, MODIS, Landsat) and
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Figure 1: Left: Full-field imagery (RGB-only) constructed from the AV dataset. A field of this size is

approximately 15,000x 15,000 pixels which can yield many smaller tiles. Right: Sample imagery and labels
for the fine-grained segmentation task.

only have limited resolutions that vary from 800 cm/pixel to 30 cm/pixel and can scale up to 5000x5000
pixels. Those datasets featuring segmentation tend to explore land-cover classification or change detec-
tion Daudt et al.| (2018); |Sumbul et al| (2019).

Pertaining to aerial agricultural imagery, datasets tend to be either low-resolution (>10 m/pixel) satel-
lite [Tseng et al.| (2021)); [Feng & Bail (2019)) or very high-resolution (<1 c¢m/pixel) imagery taken from UAV
or on-board farming equipment Haug & Ostermann| (2014)); [Olsen et al.| (2019). The Agriculture-Vision
dataset [Chiu et al.| (2020bja)) introduced a large, high-resolution (10 cm/pixel) dataset for segmentation,
bridging these two alternate paradigms.

3 Datasets

3.1 Review and Reprocessing of Agriculture-Vision Dataset

The original AV dataset |Chiu et al.| (2020b) consists of 94,986 high-resolution (10-20 cm/pixel) RGB and
near-infrared (NIR) aerial imagery of farmland. Special cameras were mounted to fixed-wing aircraft and
flown over the Midwestern United States during the 2017-2019 growing seasons, capturing predominantly
corn and soybean fields. Each field was annotated for nine patterns described in the supplemental material.
After annotation, 512 x 512 tiles were extracted from the full-field images and then pre-processed and scaled.
While this pre-processing produces a uniformly curated dataset, it naturally discards important information
about the original data.

To overcome this limitation, we obtained the original raw, full-field imagery. We are releasing this raw data as
full-field images without any tiling, as it has been demonstrated to be beneficial to model performance
. A sample image is shown in Figure [1| (left). The original dataset can be recreated from this
new dataset by extracting the tiles at the appropriate pixel coordinates provided in the data manifest.

3.2 Raw Data for Pre-training

We identified 1200 fields from the 2019-2020 growing seasons collected in the same manner as in Section [3.1]
For each field we selected three images, referred to as flights, taken at different times in the growing season,
resulting in 3600 raw images available for pre-training. We elect to include data from 2020 even though
it is not a part of the original supervised dataset because it is of high quality, similar in distribution to
2019, and we wish to encourage exploration around incorporating different source domains into modeling
approaches as this is a very central problem to remote sensing data. We denote this raw imagery plus the
original supervised dataset (in full-field format) as the “Extended Agriculture-Vision Dataset” (AV+); it will
be made publicly available.

3.3 Fine-Grained Segmentation Dataset

In addition to the AV dataset, we benchmark the performance of the learned representations on another
downstream segmentation task. We collected 68 flights from the 2020 growing season that were not included
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in AV+ for this task. From these flights, 184 tiles with shape 1500x 1500 were selected and densely annotated
with four classes: soil, weeds, crops, and un-managed area (e.g. roads, trees, waterways, buildings); an
“ignore” label was used to exclude pixels which may unidentifiable due to image collection issues, shadows,
or clouds. The annotations in this dataset are much more fine-grained than those in the AV+ dataset. For
example, whereas the AV+ dataset identifies regions of high weed density as a “weed cluster”, this dataset
identifies each weed individually at the pixel level and also labels any crop or soil in those regions by their
appropriate class. The fine-grained nature and small dataset size make this a very challenging segmentation
task. A sample image and annotation are shown in Figure [1] (right).

4 Methodology for Benchmarks

In this section, we present multiple methods for pre-training a transferable representation on the AV-+
dataset. These methods include MoCo-V2 (Chen et al.| (2020b), MoCo-V2 with a Pixel-to-Propagation
Module (PPM) Xie et al.| (2021b)), the multi-head Temporal Contrast based on SeCoManas et al.[(2021]), and
a combined Temporal Contrast model with PPM. We also explore different backbones based on ResNet |He
et al.| (2016]) and the Swin Transformer architecture [Liu et al.| (2021a).

4.1 Momentum Contrast

MoCo-V2 is employed as the baseline module for the pre-training task. Unlike previous work focusing only
on RGB channels|He et al.| (2020); |[Manas et al.| (2021)); |Chen et al.| (2020b)), we include the information and
learn representations from RGB and NIR channels. In each training step of MoCo, a given training example
x is augmented into two separate views, query ¢ and key x*. An online network and a momentum-updated
offline network, map these two views into close embedding spaces ¢ = f,(29) and k* = fi(z*) accordingly;
the query ¢ should be far from the negative keys k£~ coming from a random subset of data samples different
from x. Therefore, MoCo can be formulated as a form of dictionary lookup in which g and k are the positive
and negative keys. We define the instance-level loss L;,s with temperature parameter 7 for scaling Wu et al.
(2018) and optimize the dictionary lookup with InfoNCE |Oord et al.| (2018]):

exp(q - k*/7)
Yop-exp(q-k=/7)+exp(q-kt/T)

Linst = - log

4.2 Momentum Contrast with Pixel-to-Propagation Module

Compared with classical datasets such as ImageNet Deng et al. (2009), COCO [Lin et al. (2014), and
LVIS |Gupta et al. (2019) in the machine learning community, low-level semantic information from AV+
is more abundant, with regions of interest corresponding more closely to “patterns” (i.e. areas of weed clus-
ters, nutrient deficiency, storm damage) and less to individual instances. Therefore, pre-training MoCo-V2
beyond image-level contrast should be beneficial to downstream pattern analysis tasks.

Xie et al. (2021) [Xie et al|(2021b) added a Pixel-Propagation-Module (PPM) to the SimCLR framwork
and achieved outstanding results on dense downstream tasks. However, SimCLR requires a large batch size,
which is not always achievable, to obtain sufficient negative examples. To generalize the PPM and make the
overall pre-training model efficient, we incorporate the pixel-level pretext tasks into basic MoCo-V2 models
to learn dense feature representations. As demonstrated in Figure [2JA, we add two extra projectors for pixel-
level pretask compared with MoCo-V2. The features from the backbones are kept as features maps instead
of vectors to ensure pixel-level contrast. With those two projectors, we can compute the similarity between
two pixel-level feature vectors, i.e., smoothed ¢; from PPM and k; for each positive pair of pixels ¢ and j.
Since two augmentation views both pass the two encoders, we use a loss in symmetric form following Xie
et al.| (2021b):

‘CPiIPTO = _COS(qZ'Sv k]) - COS(Q;7 kl) (2)
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Figure 2: A. Diagram of MoCo-V2 with Pixel-to-Propagation Module (MoCo-PixPro). Pi includes a nor-
mally updated projector and a momentum updated projector. For pixel-level pre-task, P_ P1 is updated
by gradient descent and P_ P2 is momentum projector. B. Diagram of Temporal Contrast with Pixel-to-
Propagation Module (TemCo-PixPro). Query view 2% and key view z*° contain both artificial and temporal
variance. Query view z¢ and key view z*' contain only temporal variance. Query view z¢ and key view
x*2 only contain artificial variance. Identical cropping Terop is applied to 2t and z'3. Pixel-level contrast in
only computed on 27 and z"2.

During the training, the loss Lp;,pro from the PPM is integrated with the instance-level loss as show in the
equation [3] These two complementary losses are balanced by a factor «, set to 0.4 in all the experiments
experiments (see Supplemental: Additional Results- Balance Factor).

L= acinst + ﬁPirPro (3)

4.3 Temporal Contrast

While a pixel-level pretext task learns representations useful for spatial inference, we would further like to
learn a representation that takes advantage of the temporal information structure of AV+. For downstream
agricultural tasks, a backbone that can extract temporal-aware features could offer a more precise and general
pattern analysis. In SeCo [Manas et al.| (2021), additional encoders mapping views to multiple embedding
sub-spaced which may also be invariant to time are created.

Unlike in SeCo where images were separated with a constant time (3 months), the time difference between
images from our data varies from 1 week to 5 months. We adapt SeCo as follows. First, we randomly select
three tiles with 512 x 512 from the same field at identical locations but different times, which will be defined
as 2’1, 22 and z'. Only random cropping T¢,p is applied to the query image to generate the query view,
ie., z? = Tcmp(xtl). The first key view that contains both temporal and artificial variance is defined as ko
= T(z''), where the T is the typical data augmentation pipeline used in MoCo. The second key contains
only temporal augmentation compared with the query view. Therefore, we apply the exact same cropping
window applied to the query image, %1 = T.0p(22). The third key contains only artificial augmentations,
xF2=T(z'). Following the MoCo and SeCo learning strategy He et al.[(2020); Maiias et al. (2021), these view
can be mapped into three sub-spaces that are invariant to temporal augmentation, artificial augmentation
and both variance. In this way, we fully explore the multi-time scale information in AV+ to further improve
the temporal sensitivity of encoders. Since the temporal contrast does not necessarily cross seasons or enforce
alignment of seasonality within a sub-space, we denote our approach Temporal Contrast (TemCo).
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4.4 Temporal Contrast with Pixel-to-Propagation Module

We create an integrated model (TemCo-PixPro) to capture the dense, spatiotemporal structure of AV+.
Concretely, we merge PPM and TemCo into a single model to increase the encoders’ spatial and temporal
sensitivity.

To ensure efficient computation, we do not compute pixel-wise contrastive update in each temporal sub-
space. Instead we assign two extra projectors for pixel-level contrastive learning. We include the PPM after
the online backbone and one of pixel-level projectors to smooth learned features. Then, we calculate the
similarity of the smooth feature vectors and the momentum encoder features through a dot product. We
illustrate the overall architecture of this model in the Figure [2B.

4.5 Swin Transformer-Based Momentum Contrast

While the Swin Transformer achieves superior performance on various computer vision tasks |[Liu et al.
(2021a3b)), only very recent work has focused on self-supervised training for vision transformers (ViT)Xie
et al.| (2021al); [Li et al| (2021). To the best of our knowledge, no study has investigated Swin Trans-
former’s performance on remote sensing datasets using self-supervised methods. Therefore, we explore a
Swin Transformer-based MoCo for pre-training of AV+. Specifically, we adopt the tiny version of the Swin
Transformer (Swin-T) as the default backbone.

Following most transformer-based learning tasks, we adopt AdamW Kingma & Ba (2014) for training. Addi-
tionally, we incorporate the multiple-head projectors from TemCo and PPM to capture temporal knowledge
and pixel-level pretext tasks.

4.6 Pre-training Settings

All the artificial data augmentations used in this paper are follow MoCo-V2, including random color jitter,
gray-scale transform, Gaussian blur, horizontal flipping, resizing, and cropping. We train each model for 200
epochs with batch size 512. For ResNet-based models we use SGD as the optimizer with a weight decay of
0.0001, and momentum of 0.9. The learning rate is set to 0.03 initially and is divided by 10 at epochs 120
and 160. Swin-T models use the AdamW optimizer, following previous work [Xie et al.| (2021a)); [Liu et al.
(2021a). The initial learning rate is 0.001, and the weight decay is 0.05.

We use all four channels, RGB and NIR, to fully extract the features contained in the dataset. When testing
ImageNet-initialized backbones for comparison, we copy the weights corresponding to the Red channel of the
pre-trained weights from ImageNet to the NIR channel for all the downstream tasks following the method
of (Chiu et al.| (2020Db)).

4.7 Downstream Classifications Performance

We benchmark and verify the performance of our basic model (MoCo-V2) and its variants on classification
task of the labeled portion of AV+, following three protocols: (i) linear probing |[He et al.| (2020)); |(Chen et al.
(2020bjal); [Tian et al.|(2020)), (ii) non-linear probing Han et al.| (2020)), and (iii) fine-tuning the entire network
for the downstream task.

4.7.1 Linear Probing

Following standard protocol, we freeze the pre-trained backbone network and train only a linear head for
the downstream task. We train the models for 50 epochs using Adam optimizer with an initial learning rate
of 0.0001 and report the top-1 classification validation set.

Figure[3]shows the impact of different weight initialization and percentages of labeled data in the downstream
task. Consistent with previous research |Manas et al,| (2021), there is a gap between remote sensing and
natural image domains: ImageNet weights are not always an optimal choice in this domain. MoCo-PixPro
obtain the highest accuracy for the ResNet-18 backbone. As we compare the results of ResNet50 and Swin-T
with full labeled data, all Swin-T models underperformed their CNN counterparts.
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Figure 3: Accuracy under the linear probing protocol on AV+ classification. Results are shown from different
pre-training approaches with different backbones (Left: ResNet-18, Middle: ResNet-50, Right: Swin-T)

under different fractions of data for the downstream task (red: 10%, blue: 100%).
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Figure 4: Accuracy under non-linear probing protocol on AV+ classification. Results are shown from different
pre-training approaches with different backbones, ResNet-18 (left), ResNet-50 (middle), and Swin-T (right),
under different percentages of labeled data for the downstream task.

4.7.2 Non-Linear Probing

We evaluate the frozen representations with non-linear probing: a multi-layer perceptron (MLP) head is
trained as the classifier for 100 epochs with Adam optimization.

Classification results on AV+ classification under non-linear probing are shown in Figure [d] Consistent with
results in the natural image domain , non-linear probing results surpass linear probing. Our
SSL weights exceed ImageNet’s weights by over 5% regardless of the amount of downstream data or backbone
type. From the results of ResNet-18, the optimal accuracy between different pre-training strategies comes
from either MoCo-PixPro or TemCo-PixPro, different from linear probing. Overall, MoCo-PixPro performs
better than the basic MoCo model across different backbones.

4.7.3 Fine-Tuning

Finally, we examine end-to-end fine-tuning with different percentages of labeled AV+ data for classification.
We use the same architecture, learning schedule and optimizer as non-linear probing.

Our SSL weights show outstanding results in the low-data regions (<10% of data). For ResNet-18, MoCo-
PixPro is better than the other models in all cases, whereas other SSL models demonstrate similar per-
formance to ImageNet when labeled data is abundant. As we increase the backbone size to ResNet-50,
our MoCo and MoCo-PixPro stably outperform ImageNet’s model across all amounts of data, suggesting a
greater capacity to learn domain-relevant features.

In Figure (right), all models perform agreeably well in the Swin-T framework compared with weights from
ImageNet. While fine-tuning was performed in the same manner as the ResNet models for fair comparisons,
Swin-T shows the most promising performance in this end-to-end setting.
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Figure 5: The accuracy under the end-to-end classification protocol on AV+. Results cover different pre-
training approaches and backbones, varying from ResNet-18 (left), ResNet-50 (middle), and Swin-T (right).
We also report the model’s performance tuned with different percentages of the fully labeled dataset, ranging
from one percent to a hundred percent.

4.8 Semantic Segmentation on Extended Agriculture-Vision

We continue our benchmarking study by examining their impact on the semantic segmentation approach on
AV+ as originally formulate in |Chiu et al.| (2020b)). Again we apply two protocols for evaluating the learned
representations: maintaining a fixed encoder, or fine-tuning the entire network.

To naively assess the pre-trained representations, we adopt the simple yet effective U-Net |Ronneberger et al.
(2015) framework. Unlike previous work on AV |Chiu et al| (2020b)), we report results over all the patterns
in AV+, including storm damage, to ensure an integrated and comprehensive analysis.

First, we evaluate the representation by holding the pre-trained encoder fixed and fine-tuning only the
decoder during the supervised learning phase. Similarly, we evaluate pre-training impact on segmentation
tasks allowing for fine-tuning of both the encoder and decoder during the supervised learning phase. We
train the models using Adam optimization with an initial learning rate of 0.01. The one-cycle policy [Smith
(2017) is used to update the learning rate as in|Chiu et al.| (2020b). ResNet-18 models are trained for 30,000
steps while the larger ResNet-50 and Swin-T models are trained for 120,000 steps to allow for sufficient
training.

4.8.1 Segmentation Results

Results are shown in Table[[] MoCo-PixPro performs best for the ResNet-18 backbone when encoder remains
fixed during supervised training; this result is similar to that seen for classification. This result supports
our hypothesis that AV+ has abundant low-level semantic information and including pixel-level pre-task is
critical for downstream learning tasks. When the encoder is unfrozen during supervised training, the basic
MoCo-V2 shows the best results, but not significantly better than TemCo or TemCo-PixPro. By scaling
from ResNet-18 to ResNet-50, MoCo-PixPro outperforms ImageNet, especially when the encoder remains
fixed. Importantly, unlike the ResNet-based models, the Swin Transformer-based MoCo-PixPro shows the
best results across all variations in the setting.

4.8.2 Comparison with Agriculture-Vision Results

The AV dataset was benchmarked on a downstream segmentation task with architectures based on the
DeepLabV3|Chen et al.| (2018]) framework. Because the previous results report mean Intersecion-over-Union
(mloU) for 8 agricultural patterns, we re-trained our models using a simple U-Net architecture |Ronneberger
et al.| (2015) and without considering the excluded pattern storm damage to appropriately compare the
results. With a lightweight U-Net, smaller backbone, and much less training, our SwinT-based model
outperforms the best results from |Chiu et al.| (2020b)) in the Table [2| demonstrating the effectiveness of our
approach.
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Table 1: Results of Downstream Segmentation Task on AV+ using mean-IoU metric

mloU (%) | mIoU (%) | mlIoU (%) | mloU (%)

Pretrained Weights | Backbone Fixed Fixed Fine-Tuned | Fine-Tuned
1% 100% 1% 100%
Random ResNet-18 18.89 21.37 19.02 26.94
ImageNet ResNet-18 19.02 23.39 19.73 29.23
MoCo-V2 ResNet-18 22.36 27.83 22.53 31.80
MoCo-PixPro ResNet-18 23.71 30.60 20.04 30.56
TemCo ResNet-18 23.71 26.85 21.09 31.76
TemCo-PixPro ResNet-18 22.97 28.60 21.32 31.66
Random ResNet-50 19.42 21.82 18.71 26.37
ImageNet ResNet-50 21.21 25.94 20.31 30.52
MoCo-V2 ResNet-50 24.25 31.03 21.47 31.87
MoCo-PixPro ResNet-50 25.76 32.35 21.36 31.58
Random Swin-T 15.89 20.10 22.68 37.14
ImageNet Swin-T 20.00 22.40 30.96 43.01
MoCo-V2 Swin-T 25.51 30.60 28.12 41.02
MoCo-PixPro Swin-T 27.61 32.96 32.06 43.33

Table 2: Comparision of mloUs between the Agriculture-Vision model and our propsed U-Net-based model
on Agriculture-Vision validation set.

Methods | Pre-trained Weights | Backbone | mIOU(%)
FPN-basedChiu et al.| (2020b) ImageNet ResNet-101 43.40
U-Net MoCo-V2 Swin-T 46.15
U-Net MoCo-PixPro Swin-T 48.75

4.9 Fine-Grained Semantic Segmentation

Unlike AV+, this dataset is severely limited by the availability of fine-grained segmentation labels. There
are 184 tiles, from 68 flights, in this dataset that are split into training (70%), validation (15%), and test
(15%). Again, we use a U-Net architecture with ResNet-18 encoder. For training, we use a multi-class focal
loss [Lin et al.| (2017 to account for the strong class imbalance.

Table 3: IoU for each model in the fine-grained semantic segmentation task considering different encoder
weight initializations, architectures, and weight fixing schemes.

Weights | Architecture | IoU (Fixed-Weights) | IoU (Fine-Tuned)
Random ResNet-18 39.05 42.19
ImageNet ResNet-18 40.81 45.47
MoCo-v2 ResNet-18 44.05 43.97
MoCo-PixPro ResNet-18 42.03 44.62
TemCo ResNet-18 42.30 44.48
TemCo-PixPro ResNet-18 43.45 43.91
MoCo-v2 ResNet-50 40.03 40.54
MoCo-v2 Swin-T 40.25 40.00
MoCo-PixPro Swin-T 37.56 40.67
TemCo. Swin-T 39.52 40.26
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Figure 6: A sample output on the fine-grained segmentation task using fixed-encoder weights from Ima-
geNet and MoCo-V2. The segmentation outputs are compared with both the original RGB image and the
segmentation labels.

Results are shown in Table [3] and a sample output is shown in Figure [ Results improve across board
when both encoder and decoder are fine-tuned. Although less dramatic than the results seen on the AV+
classification and segmentation tasks, some improvement over ImageNet weights is seen using the MoCo-
v2 framework with ResNet-18 backbone for fixed-weights. As seen on the other tasks, when the entire
network undergoes fine-tuning, the ImageNet and SSL weights, specifically MoCo-PixPro, produce roughly
the same performance on the downstream task. Additional per-class analysis is provided in the Supplemental.
The ResNet-50 and Swin-T models performed relatively worse compared to the ResNet-18 models which is
unsurprising given the extremely small size of this dataset.

4.10 Land-Cover Classification on EuroSAT

We further prove pretraining on the AV+ dataset benefits the downstream task in the broader remote sensing
community. We conduct downstream classification experiments on EuroSATHelber et al.| (2019). EuroSAT
addresses the classification challenge of land use and land cover with images from Sentinel-2. It consists of
27,000 labeled images and 10 classes over 34 European countries. We use the splits protocol of train/val
following the work of [Neumann et al.| (2019); Manas et al.| (2021).

We freeze the pre-trained backbones and add a linear layer to evaluate the learned representation in this
classification task. Totally, the linear layer is tunned with 100 epochs using the Adam optimizer. The initial
learning rate is set to 0.001 and is divided by 10 at the 60th and 80th epochs.

The results shown in the Table [4] compare weights pre-trained from AG+ against other baselines. We notice
that MoCo-V2 and our proposed MoCo-PixPro achieve 1.21% and 6.25% higher accuracy compared with
ImageNet’s weights accordingly. These results confirm not only the effectiveness of pre-training on AG+ but
also AG+’s significant potential to generalize to the broader remote sensing field.

Table 4: Accuracy of the EuroSAT land-cover classification task using ResNet-18
Weights Random | ImageNet | MoCo-V2 | MoCo-PixPro
Accuracy (%) | 63.26 86.32 87.53 89.97

4.11 Ablation Study: Number of Flights

We use a ResNet-18 backbone and basic MoCo-V2 for experiments. When the number of flights used for SSL
is increased from 300 to 3600, we observe stable improvement in the downstream classification task under
the non-linear probing setting; this gain is confirmed regardless of the fraction of labeled dataset for tuning.
See Supplemental: Additional Results for more detailed results.

This improvement is seen for all examined SSL methods Figure [7] when the raw dataset is increased from
1200 to 3600 flights and evaluated under non-linear probing for classification and full-network fine-tuning
for AV+ segmentation. Our SSL models’ performance steadily grows as raw data size increases, suggesting
that even more data may lead to even greater performance.
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MoCo-V2 = MoCo-PixPro # TemCo ¢ TemCo-PixPro MoCo-V2 = MoCo-PixPro ® TemCo ¢ TemCo-PixPro
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Figure 7: Ablation study on the pre-training size of data on different pre-training methods on two downstream
tasks. Solid lines represent accuracy from 3600 flights while dashed lines represent accuracy from 1200
flights. Left: results from non-linear probing on downstream classification. Right: fine-tuning results on
entire networks for downstream AV+ segmentation.

5 Conclusion

Large, high-quality datasets are opening tremendous new opportunities for computational agriculture, but
they are extremely difficult to obtain. As in other domains, remote sensing and earth observation data is
marked by huge amounts of unlabeled data and relatively few annotations; leveraging the information in this
unlabeled data therefore becomes a critical task. In this work we contribute to the advancement of these
efforts by releasing the AV+ dataset which contains annotated full-field imagery based on the original AV
dataset |Chiu et al.| (2020b)), supplemented by more than 3TB of raw full-field images taken at different times
in the season. The improved supervised component of the AV dataset will allow for greater flexibility in
training and augmentation protocols and enable additional possible lines of study around long-range context
and large-scale imagery. The raw unlabeled data will enable continued exploration in self, semi, and weakly
supervised methods which we have begun to benchmark here. This extension of an already important dataset
in the computational agriculture will open up many lines of research and investigation which benefit both
the agriculture and computer vision communities.

Next, we conduct a thorough benchmark study on self-supervised pre-training methods based on contrastive-
learning which capture the fine-grained, spatiotemporal nature of this data. We analyze a classification
formulation of the AV+ dataset under linear probing, non-linear probing, and fine-tuning. We also exam-
ined segmentation tasks, which are often overlooked in remote sensing approaches, based on the original
segmentation formulation of AV+ with a frozen and unfrozen encoder and an extremely small fine-grained
segmentation task under the same formulations. Our benchmark study explores both traditional CNN ar-
chitectures (ResNet-18 and ResNet-50) as well as the more recent Swin Transformer, which offers unique
potentials for computer vision, but requires huge amounts of data to train.

Importantly, we incorporate the Pixel-to-Propagation Module, originally built in the SimCLR framework,
into the MoCo-V2 framework which allows for training on larger batch sizes. Our results show that this
module is key for downstream segmentation and classification tasks, even though it was designed primarily for
dense detection and segmentation tasks. As our dataset contains richer low-level, high-frequency, fine-grained
features than traditional natural imagery like COCO or ImageNet, this suggests that PPM is beneficial for
learning dense, fine-grained features in addition to dense label structure.

We further combine this module with a TemCo, a modification of SeCo, into a rich framework which captures
the dense, spatiotemporal structure of our data. While this combined framework was not the highest-
performing on the various task, it again may have been at a disadvantage since it is a larger model and the
number of steps was fixed for fair comparison. Additionally, extending how positive samples are generated
could prove beneficial. These improvements are the focus of future analysis.
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Self-supervised methods will be crucial for unlocking opportunities in remote sensing, particularly for agri-
culture, and this dataset release and benchmark study offers a significant step in that direction.
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